
Book Recommendation Engine
DS-GA 1004, Spring 2020

Parthvi Sanjay Shah
pss434@nyu.edu

Gunjan R. Desai
grd285@nyu.edu

Anusha R. Patil
arp624@nyu.edu

May 11, 2020

Abstract

This project describes a Recommender Engine that filters the data using algorithms
and attempts to predict the preferences of users thereby, making suggestions based on
their preferences. It does this by learning the user’s past behavior and recommending
the most relevant items to the users.

1 Overview

We implemented the recommendation engine using the Alternating Least Squares (ALS)
Matrix Factorization method. ALS works by trying to find the optimal representation of
a user and item matrix. The best part of ALS is it alternates between finding the optimal
value for user matrix and item matrix. We evaluated our recommendations based on MAP
and Precision at k. We have used spatial data structure to implement accelerated search at
query time by using the annoy package and carried out data exploration using t-SNE.

2 Data Processing

Exploring the dataset, we begin with the user-book interaction file which contains the
columns user id, book id and rating that we will be using to build the model.

Figure 1: Distribution of Ratings Figure 2: Ratings in general

1

mailto:pss434@nyu.edu
mailto:grd285@nyu.edu
mailto:arp624@nyu.edu


2.1 Data Splitting and Sampling

After filtering the users with more than 10 interactions, we collected the distinct user id
along with their interactions from the dataset and distributed them in 60-20-20 percent
proportion to train, validation and test sets respectively. Then, We split the users into
validation and test sets such that they contain interactions that are present in the training
set. Next, we collected the user id in validation set and sampled 50% of their interactions
by using sampleby() and similarly for test set. Since ALS models only accept integer values
as parameters, we converted the string valued columns (user id, book id) by using String
Indexer. Also, Because of the limited computing resources, We sampled 1% of users and
took all their interactions to make a subset of the data.

3 Model and Experiments

Implemented ALS from Spark’s ML library. After fitting the model, we made top 500
predictions for validation and test sets and then retrieved latent features.

3.1 Hyper-Parameter Tuning:

Precision at k: How many of the predicted items are truly relevant.
Mean Average Precision (MAP) : How many predicted also appear in the true label set.
We hyper-tuned the parameters using cross-validation.
- Rank: [5 , 10, 15] - the dimension of latent factors.
- Alpha: [1 , 2 , 5] - the scaling parameter for count data.
- Regularization Parameter: [0.01 , 0.1 , 1] - the parameter which controls overfitting.

Figure 3: Ranking Metrics

After fitting our model with permutation of these parameters, we found the best setting
on the validation set based on Precision at k and MAP. The best model was with parame-
ters: Rank - 15, Alpha - 2 and Regularization Parameter - 0.01; where Precision at k is 0.014
and MAP is 0.0016.

2



3.2 Evaluation Results

After hyper-parameter tuning with re-
spect to the validation set, we fit our best
model to the training set and evaluate our
results on the test set. The results are
listed on the side:

4 Extensions

4.1 Extension: Fast Search

By using spatial trees, we can accelerate the query by recursive partitioning on the dataset,
reducing the time complexity from O(n) to O(log n). Annoy is extremely efficient for mem-
ory storage. After extracting latent features of the user and items matrix, we search for
nearest-neighbours for a query based on these latent-factors. We compared a number of
trees built in the Annoy Index. Each point on the graph denotes the total number of nodes
searched at K. After plotting recall vs query-time search plot, we realised that, to increase
accuracy we need to compromise on query search time if we keep the number of trees
fixed. An interesting thing to notice is that the query search time almost remains the same
for any number of trees. Although, with increase in number of trees, we achieve a higher
recall at the same search k value.

Figure 4: Mean query search using annoy

It takes a while for Annoy to reach an exact score of 1 for recall compared to the brute
force method. This could possibly be because of the additional overhead of going through
intermediate nodes as the search k increases. Otherwise, Efficiency gain in Annoy is better
than Brute Force.

4.2 Extension: Exploration

We use the learned representations to visualize the items and users using t-SNE.
t-SNE is a machine learning algorithm that is used for visualizing high-dimensional data.

3



The main idea is to take a set of points in a high-dimensional space and find an accurate
representation of those points in a lower-dimensional space, typically the 2D plane. The
algorithm is non-linear and adapts to the underlying data, performing different transfor-
mations on different regions.
We tune the perplexity parameter, which describes how to balance attention between local
and global aspects of data. The parameter is a rough estimate about the number of close
neighbors each point has.
To visualize our data, we have tuned the perplexity parameter, taking values [2, 30, 50]
At perplexity = 2, local variations dominate.
At perplexity = 30, the basic topology is displayed correctly
At perplexity 50, the outer group becomes a circle, as the plot tries to depict the fact that
all its points are about the same distance from the inner group.

Figure 5: Item, perplexity = 50
Figure 6: Item, perplexity = 2

Figure 7: Users, perplexity = 30 (de-
fault)

Figure 8: Users, perplexity = 2

5 Student Contribution

Gunjan worked on Data Processing, Splitting and ALS model. Parthvi worked on Hyper-
parameter Tuning and Annoy. Anusha worked on Exploration and LATEX documentation.

4



All members contributed equally towards the content in the report.

6 References

1. https://towardsdatascience.com/my-journey-to-building-book-recommendation
-system-5ec959c41847

2. https://towardsdatascience.com/visualising-high-dimensional-datasets
-using-pcaand-t-sne-in-python-8ef87e7915b

3. https://towardsdatascience.com/prototyping-a-recommender-system-step
-by-step-part-2-alternating-least-square-als-matrix-4a76c58714a1

4. https://spark.apache.org/docs/latest/api/python/pyspark.ml.html

5

https://towardsdatascience.com/my-journey-to-building-book-recommendation-system-5ec959c41847
https://towardsdatascience.com/my-journey-to-building-book-recommendation-system-5ec959c41847
https://towardsdatascience.com/visualising-high-dimensional-datasets-using-pcaand-t-sne-in-python-8ef87e7915b
https://towardsdatascience.com/visualising-high-dimensional-datasets-using-pcaand-t-sne-in-python-8ef87e7915b
https://towardsdatascience.com/prototyping-a-recommender-system-step-by-step-part-2-alternating-least-square-als-matrix-4a76c58714a1
https://towardsdatascience.com/prototyping-a-recommender-system-step-by-step-part-2-alternating-least-square-als-matrix-4a76c58714a1
https://spark.apache.org/docs/latest/api/python/pyspark.ml.html

	Overview
	Data Processing
	Data Splitting and Sampling

	Model and Experiments
	Hyper-Parameter Tuning:
	Evaluation Results

	Extensions
	Extension: Fast Search
	Extension: Exploration

	Student Contribution
	References

